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Abstract: The ability of comparative molecular field analysis (CoMFA), a three-dimensional, quantitative structure-
activity relationship (3-D QSAR) paradigm, to predict the activity of inhibitors of angiotensin-converting enzyme 
(ACE) and thermolysin was examined. Correlations derived from computationally and experimentally determined 
alignment rules were compared. The correlations derived for the ACE series using alignment rules determined from 
a systematic conformational search (Mayer, D.; Naylor, C. B.; Motoc, L; Marshall, G. R. / . Comput.-Aided Molec. 
Des. 1987, /, 3-16) were comparable to those derived for the thermolysin inhibitors using alignment rules defined by 
crystallographic data. Models derived from potential fields alone, however, were insufficient for accurately quantifying 
and predicting the nature of enzyme-inhibitor interactions. The predictive ability of the ACE model for a series of 
molecules not included in the training set was improved by the addition of a zinc indicator variable which explicitly 
defined the nature of the zinc-ligand interaction, an effect not observed within the thermolysin series. The effects of 
additional parameters, such as torsional degrees of freedom and the change in conformational enthalpy, AZf00n̂ r1n = 
âligned - #min. were also examined. Experimentally derived alignment rules based on known structures of three-

dimensional complexes produced predictive correlations for thermolysin inhibitors comparable, but not superior, to the 
correlations for ACE inhibitors based on alignment rules which were computationally deduced. The use of the active 
analog approach to determine active site geometries in the absence of structural data on the receptor is strongly 
supported by these results. Additionally, the correlations indicate that 3-D QSARs based on alignment rules derived 
from structure-activity data alone can produce statistically significant predictive correlations for quite diverse, 
noncongeneric compounds. 

Introduction 

Traditional QSAR applications, based on concepts from 
physical organic chemistry, have long attempted to correlate 
biological activity with measurable physicochemical parameters 
such as Hansch's log P, Hammett's s, Taft's £s, and MR.1 The 
literature is filled with accounts of successful applications of these 
parameters to the development of robust QSARs for congeneric 
series.2-6 Advancements in computer technology and data analysis 
have allowed us to extend QSAR parameters to the level of 3-D 
properties of the molecules of interest. Current 3-D QSAR 
methods include molecular-shape analysis,7 the hypothetical active 
site lattice (HASL),8 the RECEPS programs,9 Crippen's distance 
geometry4 and Voronoi binding sites,10 and comparative molecular 
field analysis (CoMFA).1^12 

Angiotensin-converting enzyme (ACE) is a zinc-containing 
metallopeptidase which catalyses the hydrolysis of the C-terminal 

* To whom correspondence should be addressed. 
t Current address: TRIPOS Associates, Inc., 1699 S. Hanley Road, Suite 

303, St. Louis, MO 63144. 
' Current address: Department of Biochemistry and Molecular Biology, 

University College London, Gower Street, London WClE 6BT, U.K. 
' Current address: SmithKline Beecham Research Centre, Cold Harbour 

Road, The Pinnacles, Harlow, Essex CM 19 5AD, U.K. 
(1) Hansch, C; Leo, A. Substituent Constants for Correlation Analysis 

in Chemistry and Biology; Wiley-Interscience: New York, 1979. 
(2) Hansch, C; Klein, T. E. Ace. Chem. Res. 1986, 19, 392^tOO. 
(3) Clare, B. W. J. Med. Chem. 1990, 33, 687-702. 
(4) Ghose, A. K.; Crippen, G. M. J. Med. Chem. 1985, 28, 333-346. 
(5) Gould, K. J.; Manners, C. N.; Payling, D. W.; Suschintzky, J. L.; 

Wells, E. J. J. Med. Chem. 1988, 31, 1445-1453. 
(6) Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; Robins, R. K. 

Mathl Comput. Modelling 1990, 14, 505-510. 
(7) Hopfinger, A. J. J. Am. Chem. Soc. 1980, 102, 7196-7206. 
(8) Doweyko, A. M. J. Med. Chem. 1988, 31, 1396-1406. 
(9) Kato, Y.; Itai, A.; Iitake, Y. Tetrahedron 1987, 43, 5229-5236. 

dipeptide His-Leu from the decapeptide angiotensin I to produce 
the octapeptide angiotensin II, a potent vasoconstrictor. Inhibitors 
of ACE, such as captopril, enalapril, and lisinopril, are widely 
prescribed to control essential hypertension.13 Although the 
primary amino acid sequence of ACE is known,14-16 its 3-D 
structure is still undetermined. What is known about the 
structural requirements for ACE inhibition has been derived from 
a plethora of SAR studies.17-19 These studies, combined with 
crystallographic data from the analogous enzyme thermolysin 
and its inhibitors, indicate that the requirements for binding to 
ACE are (1) a C-terminal carboxyl group for ionic binding to a 
positively charged group on the enzyme; (2) a carbonyl oxygen 
which hydrogen bonds to some active site residue X-H; and (3) 
some zinc-binding functional group such as a carboxylate, 
hydroxamate, phosphonate, or thiolate.19 This structural infor­
mation defines the minimal set of active site groups necessary for 
ACE inhibition and has been used to analyze databases of di-
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1989; pp 253-295. 
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verse structural classes of ACE inhibitors to determine a com­
mon three-dimensional geometry for the active site consistent 
with their activity.20-22 

The CoMFA methodology of 3D-QSAR is based on the 
assumption that the interactions between a ligand (inhibitor) 
and its receptor (enzyme) are primarily noncovalent in nature 
and shape-dependent. Therefore, a QSAR can be derived by 
sampling the electrostatic and steric fields surrounding a set of 
inhibitors and correlating the differences in those fields to 
biological activity. This methodology has been successfully 
applied to studies of inverse agonism of the benzodiazepine 
receptor,23 prediction of electronic effects of substituted benzoic 
acids,24 pAfa's of substituted imidazoles,25 various biological 
activities of clodronic acid esters,26 and muscarinic agonists27 to 
name a few. We have applied the CoMFA methodology to a 
series of 68 ACE inhibitors representing 28 different chemical 
classes. Using the active site geometry determined by Mayer et 
al.,21 we derived a CoMFA model with a statistically significant 
crossvalidated R2 and considerable predictive ability for inhibitors 
outside of the training set. 

CoMFA is a shape-dependent parameter;12 therefore, the 
calculated field values are highly dependent on the conformation 
of the considered molecules and their relative orientations (the 
"alignment rule" n '28). Since the geometry of the ACE inhibitors 
was determined computationally rather than experimentally, we 
decided to calibrate the results of the ACE series against a series 
of molecules for which there is crystallographic data to explicitly 
define the active site geometry and the resulting alignment rules. 
Thermolysin inhibitors were chosen for several reasons: (1) the 
structures of native thermolysin and a variety of bound inhibitors 
are available; (2) there are a number of inhibitors of thermolysin 
available from the literature; and (3) thermolysin is also a zinc-
containing metallopeptidase and numerous similarities between 
thermolysin and ACE have been proposed.18 

Methods 

A. General Methods. All molecular modeling and CoMFA 
analyses were done using SYBYL29 versions 5.32 and 5.41 running 
on Silicon Graphics Iris 4D/80 and 4D/380, respectively. 
Molecular coordinates for the alignment rule were determined 
by a least-squares fitting procedure described below. The steric 
and electrostatic interactions for the CoMFA analyses were 
calculated using a volume dependent lattice with a 2-A step size, 
an sp3 hybridized carbon probe atom carrying a charge of +1.0, 
and a distance-dependent dielectric constant (1 Ir). The CoMFA 
lattice for the ACE series was 25 X 24 X 19 A (X = -10 to 15, 
Y = -15 to 9, Z = -8 to 11) with 1560 points. The lattice for 
the thermolysin series was 26 X 26.5 X 22.5 A (X = -9.4 to 17.4, 
Y= -16.5 to 10, Z = -12 to 10.5) with 2352 points. The cutoff 
value for both the steric and electrostatic interactions was set to 
+30 kcal/mol. Charges were calculated using the Gasteiger and 

(20) DePriest, S. A.; Shands, R. F. B.; Dammkeohler, R. A.; Marshall, G. 
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Med. Chem. 1991, 34, 2338-2343. 
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Marsili method.30 In all cases, the zinc-binding functionalities 
were considered to be ionized,31 so the partial charges were 
calculated using formal charges of -0.5 on each of the C-terminal 
carboxylate oxygens and -1.0 on the zinc-ligand sulfur or oxygen. 
Columns in the data table for which the standard deviation was 
less than 0.05 were dropped. Correlations were derived using the 
method of partial least squares (PLS)32 with principal component 
analysis (PCA)33 and crossvalidated to reduce the probability of 
obtaining chance correlations. 

As used in this paper, the cross-validated R2 refers to the squared 
correlation coefficient of the equation derived from the cross-
validation of the training set to determine the optimum number 
of principal components. The conventional R2 is the fitted 
correlation of the training set using the optimum number of 
principal components with no crossvalidation. The predictive R2 

refers only to test molecules not included in the training set and 
was calculated analogous to the definition for the conventional 
R2 by Cramer et al.,12 as 

predictive R1 = (SD - press)/SD 

where SD is the sum of squared deviations of each biological 
property value (the pICso) for each molecule in the test set from 
the mean of the training set, and press is the sum, over all molecules 
in the test set, of the squared differences between their actual and 
predicted biological property values. This is not simply an rms 
fit to the line corresponding to R2 = 1, but rather a measure of 
the predictive ability of the QSAR model relative to the "best 
guess" case of using the mean biological property of the training 
set, where J?2 would be equal to 0. An R2 < 0 indicates that the 
model predicts activities with larger residuals than one would 
obtain by using the mean activity of the training set as the 
prediction for each member of the test set. 

B. CoMFA of ACE Inhibitors. A training set of 68 molecules 
(Table I; 2D structures and coordinates are available as sup­
plementary material) was selected from the literature,19'31'34-48 

representing the diversity of structures and activities in the original 
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Table I. Activities for the ACE Training Set 

molecule 

molOl 
mol02 
mol03 
mol04 
mol05 
mol06 
mol07 
mol08 
mol09 
mol 10 
mol l l 
mol 12 
mol 13 
mol 14 
mol 15 
mol 16 
mol 17 
mol 18 
mol 19 
mol 20 
mol 21 
mol 22 
mol 23 
mol 24 
mol 25 
mol 26 
mol 27 
mol 28 
mol 29 
mol 30 
mol 31 
mol 32 
mol 33 
mol 34 

pICso 

6.15 
7.42 
7.00 
8.43 
8.22 
6.34 
6.11 
9.00 
7.64 
8.05 
7.19 
7.31 
8.77° 
7.30* 
8.54" 
8.52" 
9.64° 
8.92" 
8.92" 
8.96" 
8.55" 
9.22" 
8.40 
8.00° 
8.11° 
7.92 
8.52 
8.54 
8.15 
5.55 
6.07 
5.80 
6.37 
6.70 

ref 

34 
35 
35 
36 
19 
19 
37 
19 
38 
39 
19 
19 
19 
40 
19 
19 
19 
41 
41 
19 
19 
19 
19 
19 
36 
19 
19 
19 
19 
31 
31 
31 
31 
31 

molecule 

mol 35 
mol 36 
mol 37 
mol 38 
mol 39 
mol 40 
mol 41 
mol 42 
mol 43 
mol 44 
mol 45 
mol 46 
mol 47 
mol 48 
mol 49 
mol 50 
mol 51 
mol 52 
mol 53 
mol 54 
mol 55 
mol 56 
mol 57 
mol 58 
mol 59 
mol 60 
mol 61 
mol 62 
mol 63 
mol 64 
mol 65 
mol 66 
mol 67 
mol 68 

pICjo 

6.19 
2.70 
2.70 
2.87 
4.51 
5.52 
4.96 
2.74 
2.96 
3.21 
2.98 
3.26 
3.35 
3.64" 
3.38° 
3.89° 
3.22 
3.72 
4.28 
3.03 
3.62 
4.77 
2.96 
3.62 
3.19 
5.62 
4.41 
6.15 
3.48 
4.99 
5.31 
5.62 
5.08 
4.32 

ref 

31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
19 
19 
19 
19 
19 
19 

" Activity is for a diastereomeric or racemic mixture. Ambiguous 
chiral centers were modeled in the S configuration. 

set of 28 classes of inhibitors used to define the active site geometry 
of Mayer et al.21 The molecules were built from the SYBYL 
fragment database, using the Mayer molecules as templates when 
possible, and minimized using the TRIPOS force field.49 Those 
molecules for which the activities were reported for diastereomeric 
mixtures were built in the S configuration at the ambiguous chiral 
centers in accordance with previous structure-activity stud-
;es 35,36,41,44 TjSmg Constrained Search,50 all molecules were 
submitted to a conformational search using a 10° scan of all 
rotatable bands to verify that they could adopt the active site 
geometry defined by Mayer. Using MULTIFIT within SYBYL, 
the molecules were aligned by superimposing the C-terminal 
carboxylate, the amide carbonyl, and the zinc ligand of each 
molecule and minimized to fit the Mayer geometry (Figure 1) 
of either captopril or enalapril. The molecules were then input 
as rows of a QSAR table along with their respective ICs0 values 
(input as pICso). CoMFA steric and electrostatic fields were 
calculated as described above and entered as columns in the QSAR 
table. Initially an analysis with 68 cross-validation groups was 
performed to determine the optimum number of principal 
components (PCs) using only the CoMFA steric and electrostatic 
fields as explanatory variables. This was followed by a non-
crossvalidated analysis using the optimum number of PCs to derive 
a predictive model. Twenty additional inhibitors19'31'3*"48 (Table 
II), reflecting the diversity of the training set, were selected as 
a predictive set to test the robustness of the resulting model. To 
test the CoMFA model's ability to distinguish between different 
zinc-ligand classes, predictive sets for 10 carboxylate51 (Table 

(49) Clark, M.; Cramer, R. D., Ill; Van Opdenbosch, N. J. Comput. Chem. 
1989, 10, 982-1012. 

(50) Dammkoehler, R. A.; Karasek, S. F.; Shands, E. F. B.; Marshall, G. 
R. J. Comput.-Aided Molec. Des. 1989, 3, 3-21. 

(51) Sawayama, T.; Tsukamoto, M.; Sasagawa, T.; Nishimura, K.; 
Yamamoto, R.; Deguchi, T.; Takeyama, K.; Hosoki, K. Chem. Pharm. Bull. 
1989, 37, 2417-2422. 

DePriest et al. 

Figure 1. Orthogonal stereoviewsofthe68ACE inhibitors in the training 
set superimposed according to the alignment rule defined by the geometry 
of Mayer et al.21 

Ill), 19 phosphate52 (Table IV), and 17 sulfhydryl53 (Table V) 
zinc-ligands were selected from the literature and MULTIFIT 
to the active site geometry as previously described, and their 
activities predicted. Analysisofthe resulting correlation indicated 
a failure of the CoMFA to adequately distinguish between the 
different types of zinc-ligands. To explicitly define the type of 
zinc-ligand in the training set, additional columns were added 
to the QSAR table as indicator variables (carboxylate, sulfhydryl, 
phosphonate, phosphoramidate, or amine). This was done in a 
binary fashion. For example, if the inhibitor contained a 
sulfhydryl zinc-ligand, a factor of 10 was entered into the 
sulfhydryl column and a zero into all other zinc-ligand columns. 
These descriptor constants were varied by factors of 10 in an 
attempt to increase the signal from the zinc-ligand parameter in 
the PCA. [In SYBYL 5.3, the user is provided with two choices 
for weighting columns in the data table: either no scaling or 
autoscaling with equal weights assigned to all columns. In 
SYBYL 5.4, the user is provided with a choice of (1) no scaling, 
(2) autoscaling, (3) user defined scaling, or (4) CoMFA standard 
weights. The analyses using SYBYL 5.3 used no scaling of the 
data with weighting controlled by the magnitude of the zinc 
descriptor. These same options were applied for the analyses 
using SYBYL 5.4 so that results from SYBYL 5.3 could be 
reproduced in SYBYL 5.4. Attempts to produce better corre­
lations in SYBYL 5.4 using user defined scaling were unsuc­
cessful.] The resulting models were tested for their predictive 
ability against the same four test data sets. Finally, since it is 
quite possible that difference zinc-ligand classes bind to the active 
site with different geometries about the zinc atom as well as 
different binding strengths, separate CoMFA models were derived 
for the 12 phosphorus-based inhibitors, the 30 thiolates and the 
23 carboxylates within the original training set of 68 molecules 
(the remaining three molecules were not included since they have 
amino groups at the zinc-ligand position which probably do not 
interact with the active site zinc atom). 

(52) Karanewsky, D. S.; Badia, C; Cushman, D. W.; DeForrest, J. M.; 
Dejneka, T.; Lee, V. G.; Loots, M. J.; Petrillo, E. W. / . Med. Chem. 1990, 
33, 1459-1469. 

(53) Oya, M.; Matusmoto, J.; Takasinea, H.; Watanabe, T.; Iwao, J.-I. 
Chem. Pharm. Bull. 1981, 29, 940-947. 
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Table II. Structures and Activities of the Molecules in the Test Set of 20 Diverse ACE Inhibitors 

molecule P( IC 5 0 ) ref molecule P(IC50) ref 
CH, 

CH3-CH-C-N-CH, 

NHL 

mol_69 

1 & CCOH 

XJOOH 

iiri2 f—^ 

SH-CH2 -CH-C-N,) 

COOH 

mol_75 

CH3 

( C H J ) 2 C H ( C H J ) 2 - C H - N H - C H - C - N ^ ) 

coon o VC Q 0 H 

moL80 

5.59° 

7.70 

7.20 

8.59° 

19 

19 

19 

19 

P V l C H j J j - C H - N H - C H - C - N ^ ^ ^ 

COOH O *COOH COOH 

mol_83 

CH3 V / 

^3"(CH2J2-CH-NH-CH-C-N-CH2 
I U ' 
COOH O COOH 

mol_85 
NH2 
I 

(CHj)3 

^- (CH 2J 2CH-NH-CH-(J j -N^3 
C 0 0 H O VCOOH 

m o L ' l 

C2H5 

CH-CH 2 -N-0—N v 
I f 
COOH l 

mol_99 

XOOH 

8.66" 

7.40° 

8.66" 

8.19 

19 

19 

19 

Q-iCH, 
CH3 

l 3 -NH-CH-C-N~) 

O V COOH 

mol_82 

CH3 

{^y~NH-C-(CH2)2-CH-NH-CH-C-N~) 
O COOH O >C0QH COOH 

mol_104 

^ 3 " ( C H 2 J 2 - C H 2 CH2 C H - C - N 

COOH 

moL112 
XOOH 

CJH3 

^3~(CH 2 ) 2 -C jH-NH-CH-C-N~) 

T 0 o \0 0 H 
NHj 

mol.118 

CH3 5j'3 
^ 3 ~ ( C H j ) j - C H - N H - C H - C - N ~ ) 

CH3O-^=O O \ Q H CH3O-P=O 
OH 

mol_121 

SH-CH2-V^, N-dH 

O COOH 

mol_129 

5.24 

8.28° 

8.32 

4.59 

6.36" 

7.28° 

19 

19 

19 

19 

19 

44 

CH3 

H - N H - C H - C - N N ^ 

0OH ° » C 0 0H 

NHj-(CH2J2-CH 

COOH 

mol.101 

I ^ N ^ i 
^ - ( C H 2 J 2 - C H l - N H * L ^ N ^ 

DOH T V COOH 

mol_131 

CH3 

O 1COOH 

I —CH-C-N^ > SH-(CHj)2-C-NH-
Il 
0 O XOOH 

mol_l34 

CH2-O-P-NH 

OH 

mol_143 

CH3 

l -CH-C-N\3 
O \ 

XOOH 

CH3 

^ ^ - ( C H 2 ) 2 - C H - N H - C H - C - N \ 3 
PO3H2 o \ i ^an2 O XOOH 

mol_147 

(CH2J2 O 

^ 3 _ C " N H - C H - P ' C H 2 — c - N ^ y 
O OH O \ . OH 

mplJ54 

6.49° 

7.25" 

5.59 

7.39 

7.29° 

7.14° 

19 

46 

19 

44 

19 

19 

COOH 

" Activity is for a diastereomeric or racemic mixture. Ambiguous chiral centers were modeled in the 5 configuration. 

C. CoMFA of Thermolysin Inhibitors. The crystal structures 
of 10 inhibitors (phosphoramidon,54 CLT,5 5 PLN, 5 4 VW,5 6 

(54) Tronrud, D. E.; Monzingo, A. F.; Matthews, B. W. Eur. J. Biochem. 
1986, 157, 261-268. 

(55) Monzingo, A. F.; Matthews, B. W. Biochemistry 1984, 23, 5724-
5729. 

(56) Holden, H. M.; Matthews, B. W. J. Biol. Chem. 1988, 263, 3256-
3260. 

ZFPLA, 5 7 ZGPLL, 5 7 ZGPOLL, 5 8 L-Leu-NHOH, 5 9 H O N H -
BZMALONYL-AIa -GIy -NITROANILINE, 5 9 and CH 2 CO-
(NOH)-LeU-OCH 3

6 0) bound to the active site of thermolysin 

(57) Holden, H. M.; Tronrud, D. E.; Monzingo, A. F.; Weaver, L. H.; 
Matthews, B. W. Biochemistry 1987, 26, 8542-8553. 

(58) Tronrud, D. E.; Holden, H. M.; Matthews, B. W. Science 1987,235, 
571-574. 

(59) Holmes, M. A.; Matthews, B. W. Biochemistry 1981,20,6912-6920. 
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Table III. ACE Carboxylate Predictive Set51 

DePriest et al. 

molecule PlC50 molecule PlC5, molecule pIC5o 
coo_23A 
coo_23J 
coo_23E 
coo 24A 

7.92 
6.41 
5.60 
5.60 

coo_24C 
coo_25A 
coo 25E 

9.60 
8.46 
7.82 

coo_26A 
coo~26C 
coo~26H 

7.92 
7.00 
6.66 

Table IV. ACE Phosphate Predictive Set52 

molecule PlC50 molecule PlC50 

sq29852 
sq29852 2A 
sq29852 2B 
sq29852 2P 
sq29852 2Q 
sq29852 2R 
sq29852 2S 
sq29852 2T 
sq29852 2U 
sq29852 2V 

7.44 
8.49 
9.31 
6.47 
9.88 
9.05 
9.11 
9.28 
9.28 
8.72 

sq29852 2 W 
sq29852 2Y 
sq29852 2Z 
sq29852 2X 
sq29852 2E 
sq29852 2G 
sq29852 2H 
sq29852 2K 
sq29852 21 

8.59 
9.06 
7.80 
9.20 
8.97 
9.54 
9.94 
9.53 
9.53 

Table V. ACE Thiol Predictive Set53 

molecule PlC50 molecule PlC50 

thiol_2 
thiol_4 
thiol_5 
thiol_7A 
thiol_7B 
thiol_9 
thiol_10 
thiol_12 
thiol 14 

2.46 
4.11 
4.72 
5.10 
3.27 
2.14 
4.17 
3.59 
3.64 

thiol_18 
thiol_20A 
thiol_20B 
thiol_22 
thiol_27 
thiol_28 
thiol_30A 
thiol 30B 

6.12 
7.19 
6.44 
4.42 
5.34 

<3.00 
7.46 
4.48 

were extracted from the Brookhaven Protein Data Bank61'62 and 
minimized using the TRIPOS force field within SYBYL so that 
the bond lengths and bond angles would be consistent with the 
other inhibitors built within SYBYL. Since the TRIPOS force 
field is not parameterized for zinc, the zinc atom in the crystal 
structure was defined as "uninteresting" and zinc-ligand 
bond(s) were defined as an aggregate so as to be ignored by the 
minimizer. An additional 51 inhibitors (Table VI) with £, values 
ranging from 10~2 to 10-10 M were taken from the liter-
ature18'54'55'57'58'63-73 and modeled as previously described using 
the crystal structures as templates. After minimizing, each 
inhibitor was aligned with the crystal structure of the inhibitor 
most similar to it using MULTIFIT and then minimized within 
the active site of the same crystal structure as previously described. 
The 61 molecules were entered as rows of a QSAR table along 
with their respective p/T,-values. CoMFA steric and electrostatic 

(60) Holmes, M. A.; Tronrud, D. E.; Matthews, B. W. Biochemistry 1983, 
22, 236-240. 

(61) Bernstein, F. C; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F., Jr.; 
Brice, M. D.; Rodgers, J. R.; Kennard, 0.; Shimanouchi, T.; Tasumi, M. J. 
MoI. Biol. 1977, 112, 535-542. 

(62) Abola, E. E.; Bernstein, F. C; Bryant, S. H.; Koetzle, T. F.; Weng, 
J. In Crystallographic Databases-Information Content, Software Systems, 
Scientific Applications; Allen, G. H., Bergerhoff, G., Sievers, R., Eds.; Data 
Commission of the International Union of Crystallography: Bonn/Cambridge/ 
Chester, 1987; pp 107-132. 

(63) Monzingo, A. F.; Matthews, B. W. Biochemistry 1982, 21, 3390-
3394. 

(64) Grobelny, D.; GoIi, U. B.; Galardy, R. E. Biochemistry 1989, 28, 
4948-4951. 

(65) Kester, W. R.; Matthews, B. W. Biochemistry 1977,16,2506-2516. 
(66) Benchetrit, T.; Fournie-Zaluski, M. C; Roques, B. P. Biochem. 

Biophys. Res. Comm. 1987, 147, 1034-1040. 
(67) Roderick, S. L.; Zaluski-Fournie, M. C; Roques, B. P.; Matthews, 

B. W. Biochemistry 1989, 28, 1493-1497. 
(68) Bartlett, P. A.; Marlowe, C. K. Biochemistry 1987, 26, 8553-8561. 
(69) Bartlett, P. A.; Marlowe, C. K. Science 1987, 235, 569-571. 
(70) Feder, J.; Brougham, L. R.; Wildi, B.S.Biochemistry 1974,73,1186— 

1189. 
(71) Nishino, N.; Powers, J. C. Biochemistry 1978, 17, 2846-2850. 
(72) Morgan, B. P.; Scholtz, J. M.; Ballinger, M. D.; Zipkin, I. D.; Bartlett, 

P. A. J. Amer. Chem. Soc. 1991, 113, 297-307. 
(73) Klopman, G.; Bendale, R. D. J. Theor. Biol. 1989, 136, 67-77. 

Table VI. Thermolysin Training Set 

molecule 
P*i 

(-log AO ref molecule 
p/iTi 

(-log M) ref 

ace_ohleu_agnh2 
bzsag 
c6pcltnme 
c6pltnme 
c6poltnme 
cbzphe 
ch3coch2co_fagnh2 
ch3o2s_fagnh2 
cho_ohleu_agnh2 
cltzncrys 
dah50 
dah51 
dah52 
dah53 
dah54 
dah55 
hoch2co_fagnh2 
nhohbzmagna 
nhohbzmagnh2 
nhohbzmagoh 
nhohbzmoet 
nhohibmagnh2 
nhohleu 
nhohmalagnh2 
ohbzmagnh2 
p(ophe)(ome)leunh2 
paaoh 
phosphoramidon 
pleunh2 
pnhet 
po3_fagnh2 

zgpolf 
zgpolg 
zgplf 
zgplg 
zgplnh2 
zgpolnh2 

Training 
2.47 73 
6.12 
7.28 
8.82 
5.84 
3.29 
2.51 
0.52 
2.47 
7.47 
7.96 
6.22 
5.55 
6.66 
5.77 
2.42 
2.54 
6.37 
6.18 
6.18 
4.70 
6.32 
3.72 
2.96 
3.38 
0.52 
4.06 
7.55 
4.10 
0.52 
5.59 

63 
64 
64 
64 
65 
73 
73 
73 
55 
18 
18 
18 
18 
18 
18 
73 
73 
73 
73 
73 
73 
73 
73 
73 
73 
73 
54 
73 
73 
73 

Set 
ppheoh 
p_ile_aoh 
(R)thiorphan 
so2p_fagnh2 
so3_fagnh2 
(s)thiorphan 
z-D-apola 
z-D-fpla 
z-D-fpola 
z-D-lpola 
z(nh)glnh2 
z(nh)glnhoh 
zala 
zapola 
zfplazncrys 
zfpola 
zb-d-lnhoh 
zgg-d-lnhoh 
zgglnhoh 
zggnhoh 
zglnh2 
zglnhoh 
zglnmeoh 
zgly 
zgpcllzncrys 
zgpla 
zgpllzncrys 
zgpola 
zgpollzncrys 
zlpola 

Predictive Set 
4.27 
3.64 
7.12 
6.57 
6.12 
3.18 

69 
69 
69 
69 
69 
69 

zlgnh2 
zfgnh2 
plfoh 
zygnh2 
0_ppphe 

4.14 
6.44 
5.64 
5.16 
2.37 
5.74 
4.62 
6.32 
4.52 
4.38 
3.42 
5.57 
6.07 
5.74 

10.17 
7.35 
4.32 
3.60 
4.41 
3.03 
1.68 
4.89 
2.65 
6.39 
6.74 
7.78 
8.04 
4.89 
5.05 
6.17 

2.51 
3.46 
7.72 
3.66 
2.79 

73 
73 
66,67 
73 
73 
66,67 
68 
68 
68 
68 
73 
73 
70 
68 
57 
68 
71 
71 
71 
71 
71 
71 
71 
70 
72 
68 
57,69 
68 
58,69 
68 

73 
73 
73 
73 
65 

fields were calculated as previously described and entered as 
columns into the QSAR table. An initial PLS analysis with 30 
cross-validation groups was performed to determine the optimum 
number of PCs using only the CoMFA steric and electrostatic 
fields as explanatory variables. This was followed by a non-
crossvalidated run using the optimum number of PCs to derive 
a predictive model. An additional 11 inhibitors (Table VI) 
reflecting the diversity of structures in the training set were selected 
from the literature,65'69'73 aligned with the crystal structure 
geometry and their activities predicted. As was done for the 
ACE series, additional analyses were performed using descriptors 
for the zinc-ligand type: carboxylate, phosphate (including 
phosphoramidates, phosphonates, and phosphinates), hydrox-
amates, and sulfur (includes thiols and sulfates). A constant of 
10,100, or 1000 was used to indicate the presence of the respective 
ligand type. The resulting noncrossvalidated models were then 
used to predict the inhibitory potencies of the 11 molecules in the 
test data set. 

Results 

A. CoMFA of ACE Inhibitors. The results of the CoMFA 
analyses of the ACE inhibitors are summarized in Table VII. 
Detailed listings of the predictions for each molecule are available 
as supplementary material. The initial analysis which considered 
only CoMFA steric and electrostatic fields produced a correlation 
with a crossvalidated R2 = 0.66 and a conventional R2 = 0.89 
for the predictive model using 8 PCs (Figure 2). When the model 
was used to predict the activities of 20 inhibitors representing all 
zinc-ligand types, the predictive R2 was 0.53 (Figure 3). The 
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Table VII. Summary of CoMFA Analyses of the ACE Series 

QSAR 

1. CoMFA only 
2. CoMFA + Zn 

(10X) 
3. CoMFA + Zn 

(100X) 
4. CoMFA + Zn 

(1000X) 
5. CoMFA + Zn 

(lOOOOX) 
6. carboxylates 
7. phosphates 
8. thiols 

obs 

68 
68 

68 

68 

68 

23 
12 
30 

SE0 

1.47 
1.27 

1.26 

1.43 

1.43 

1.55 
3.56 
1.94 

R2 cross* 

0.66(8)' 
0.64(4) 

0.68(4) 

0.67(7) 

0.66(7) 

111
 

F value 

70.77 
88.78 

75.71 

47.60 

47.03 

1147.90 
22.85 
22.84 

p value 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 
0.00 
0.00 

R2c 

0.89 
0.84 

0.83 

0.81 

0.80 

0.99 
0.83 
0.79 

SD 

0.71 
0.88 

0.90 

1.00 

1.02 

0.14 
0.63 
0.90 

" Cross-validated standard error of estimate. b Cross-validated R1: R2 value for analysis using designated number of cross-validation groups. 
c Conventional K1: fitted R1 value for predictive model derived using no cross-validation and the optimum number of principal components. d Numbers 
in parentheses are optimal numbers of components. 

2 3 4 5 6 7 8 9 
ACTUAL (plCSO) 

Figure 2. Fitted predictions vs actual pICso for the CoMFA analysis of 
68 ACE inhibitors incorporating only CoMFA parameters (QSARl). 
The model was derived using eight principal components having a cross-
validated R2 = 0.66. 

phosphorous-based inhibitors tend to be overpredicted, the 
sulfhydryl inhibitors underpredicted, and the carboxylate inhib­
itors equally distributed above and below the line representing 
a correlation of R2 = 1.0. These results could indicate the presence 
of a systematic error in the analysis. In order to confirm this 
impression, the activities for a set of 19 phosphorous-based 
inhibitors were predicted. As Figure 4 shows, all were overpre­
dicted, supporting the systematic error hypothesis. As the 
structure-activity data indicate, there is a correlation between 
ACE inhibitory activity and zinc-ligand type. These results 
indicate that the zinc-ligand interaction was inadequately 
represented in the CoMFA fields. This may be due to the fact 
that the steric field is more heavily weighted than the electrostatic 
field (3.4:1) in the PLS analysis. From the perspective of the 
active site zinc atom, the differences between the zinc ligands are 
both electrostatic in nature and represent ligand bonds (1-2 
interactions) which are not evaluated in the nonbonded interaction 
fields used in CoMFA. Further predictions for the test data sets 
of the other individual classes of zinc ligands support this 
hypothesis, with R2 values of 0.60 and 0.20 for the carboxylates 
and thiolates, respectively. 

The analyses which included the explicitly defined zinc 
descriptors generally gave improved correlations. Among the 
four zinc-ligand indicators, 10, 100, 1000, and 10 000, the 
crossvalidated and conventional R2 values are comparable to those 

O SH 

A COO 

• P04 

• NH2 

ACTUAL ( p l C 5 0 ) 

Figure 3. Predicted vs actual pICjo for the test data set of 20 diverse 
ACE inhibitors incorporating only CoMFA parameters (QSARl). The 
predictive model was derived using eight principal components having a 
cross-validated R2 = 0.66 and a conventional R2 = 0.89. 
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Figure 4. Predicted vs actual pICso for the test data set of 19 phosphate 
based ACE inhibitors incorporating only CoMFA parameters (QSARl). 
The predictive model was derived using eight principal components having 
a cross-validated R2 = 0.66 and a conventional R2 = 0.89. 

of the "CoMFA only" model above, but the predictive ability of 
these models is significantly improved. Overall, no single model 
gives accurate predictions for all classes of zinc-ligands. The 
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Figure 5. Predicted vs actual pIC50 for the test data set of 19 phosphate-
based ACE inhibitors using CoMFA parameters plus a zinc indicator 
equal to 10 (QSAR2). The predictive model was derived using four 
principal components having a cross-validated R2 = 0.64 and a 
conventional R2 = 0.84. The inclusion of the zinc indicator improves the 
predictions for the phosphates by 50%. 

Table VIH. X-Loadings from ACE CoMFA 
Descriptor of 10 

component 1 
component 2 
component 3 
component 4 

SH 

-0.635 
-1.257 

4.786 
-0.667 

COO 

1.111 
-0.970 
-1.592 

0.351 

Analysis 

PO 

0.209 
-0.621 
-0.526 

0.722 

using Zn 

NH2 

-1.059 
2.844 

-2.243 
0.296 

O 
U) 

a 

RA2=0.83 

ACTUAL (plC50) 

B 

O 
LO 

O 

O 
UJ 

2 4 6 8 

ACTUAL (plC50) 

model using a zinc descriptor of 10 (QSAR 2), however, gives 
the best overall performance (low crossvalidated standard error 
of estimate and highest F values and conventional R2), especially 
in its ability to predict the phosphate inhibitors relative to the 
other models (Figures 4 and 5). It is worth noting that the model 
using a zinc descriptor of 10 required only four principle 
components to explain 84% of the variance in inhibitory potency 
compared to the eight components required for the analysis using 
only the CoMFA parameters. Analysis of the X-loadings (Table 
VIII) for this analysis indicates that the major contributors to 
each component are the zinc-ligand types, namely carboxylate, 
amino, thiol and phosphate for components 1, 2, 3, and 4, 
respectively. Additionally, the X-scores shows that for the well-
predicted molecules in the training set, the model does recognize 
the difference in zinc-ligand type, as the principle component 
with the highest score for a given molecule is also the component 
representing the appropriate ligand type for that molecule. 

The best correlations were obtained when CoMFA models 
were derived for each individual class of zinc-ligands (Figure 6). 
The conventional R2 for the phosphorous-based inhibitors (Figure 
6A) was 0.83, producing a predictive R2 value of 0.74 for the 
phosphate test data set. For the carboxylate class (Figure 6C), 
the conventional R2 was 0.99 and the predictive R2 for the test 
data set was 0.66. Although the thiol compounds were much 
better correlated with a conventional R2 = 0.79 (Figure 6C), the 
model was unable to predict the activities of the test data set. 

B. CoMFA of Thermolysin Inhibitors. The results of the 
CoMFA analyses for the thermolysin inhibitors are summarized 
in Table IX. Analysis of 61 thermolysin inhibitors using only 
CoMFA parameters produced a correlation having a crossval­
idated R2 = 0.70 and a conventional R2 = 0.98 using 11 PCs 
(Figure 7). The predictive R2 for the test data set of 11 diverse 

o 
U 

Q 
UJ 

ACTUAL (plC50) 
Figure 6. Fitted predictions vs actual pICso for models of ACE inhibition 
derived from training sets composed of the individual zinc-ligand classes 
using only CoMFA parameters: (a) 12 phosphates (QSAR7); (b) 23 
carboxylates (QSAR6); (c) 30 thiols (QSAR8). 

inhibitors, however, was only 0.29 (Figure 8), which is significantly 
poorer than the predictions obtained from the ACE "CoMFA 
only" model (conventional R2 = 0.89, predictiveR2 = 0.53). While 
there were only minor differences in the conventional and 
crossvalidated R2 values, the addition of the zinc descriptors had 
no effect on the predictive ability of the models. Although the 
number of principle components is similar for each model, the 
relative amount of the variance explained by each component 
differs. The model incorporating the zinc indicator equal to 1000 
requires six principle components to explain 70% of the variance 
in the biological data (pK,), whereas the models derived with the 
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Table IX. Summary of CoMFA Analyses of the Thermolysin Series 

QSAR 

9. CoMFA only 
10. CoMFA+ Zn 

(10X) 
11. CoMFA+ Zn 

(100X) 
12. CoMFA+ Zn 

(1000X) 

obs 

61 
61 

61 

61 

SE" 

1.30 
1.32 

1.35 

1.40 

.R2 cross6 

0.70(11)"* 
0.67(11) 

0.64(10) 

0.63(12) 

F value 

205.41 
205.41 

205.42 

205.42 

p value 

0.00 
0.00 

0.00 

0.00 

Rlc 

0.98 
0.98 

0.98 

0.98 

SD 

0.31 
0.31 

0.35 

0.36 

1 0 -
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-
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" Cross-validated standard error of estimate. b Cross-validated J?2: R1 value for analysis using designated number of cross-validation groups, 
c Conventional R2: fitted R2 value for predictive model derived using no cross-validation and the optimum number of principal components. d Numbers 
in parentheses are optimal numbers of components. 

b, respectively. These contours represent the lattice points where 
differences in field values are associated with differences in 
inhibitory potency. In the absence of an enzyme structure, the 
interpretation of these contours is primarily intuitive and highly 
subjective. From an electrostatic perspective, one would expect 
to see strong electrostatic interactions around the C-terminal 
carboxyl as well as the amide bond between the Pi' and P2' residues, 
since these sites are proposed to exhibit strong hydrogen-bonding 
and charge-charge interactions, respectively. Examination of 
the contours of the CoMFA electrostatic field supports this binding 
hypothesis. Figure 9a shows the standard deviation times the 
CoMFA coefficients (STDEV*COEFF) for the electrostatic field. 
The blue contours represent regions where the STDEVCOEFF 
is less than -0.01, while the yellow contours represent where the 
STDEV*COEFF is greater than +0.01. A predominant feature 
of the electrostatic contour is the yellow contour about the amide 
proton of the P1 ' residue (which is expected to function as a 
hydrogen bond donor), indicating that an increase in positive 
charge in this region will increase activity. Additionally, the 
blue contours about the C-terminal carboxyl group, which is 
proposed to interact with a cationic side chain such as the guanido 
group of an arginine residue, indicate that an increase in negative 
charge in this region with increase activity. The area of negative 
potential about the P2 ' residue corresponds to the increased 
electron density about the aromatic ring of inhibitors such as the 
bicyclic lactams74 as well as some of the proline surrogate analogs 
such as benzofused Pro75 which is 3-7 times more potent than 
captopril or the 2-hydroxyphenyl analog, fentiapril,76 which is 
3-4 times more potent than captopril. 

An unexpected feature of the CoMFA electrostatic potential 
is the blue contour about the Pi residue, i.e., the pendant phenethyl 
group of enalapril indicating that negative charge in this region 
is associated with an increase in activity. According to the current 
model of ACE inhibitor binding,19 the Pi site interacts with a 
hydrophobic pocket which recognizes its aromatic ring. In support 
of this, the CoMFA steric field (Figure 9b) indicates that this 
is a region where additional steric bulk is associated with increased 
activity. Therefore, the enhancement in binding due to the the 
Pi residue may not be merely a hydrophobic interaction but also 
a cation-ir interaction77 with a cationic residue in the active site. 
This type of stabilizing interaction between a quaternary 
ammonium group and the electrons of aromatic systems has been 
observed for aromatic residues in other protein structures.78 This 
mode of interaction is further supported by the fact that branching 
at the Pi site is not well tolerated nor are aminoalkyl side chains 
unless they are acylated.19 The remaining yellow contours further 
define the steric boundaries of the S / and S2 ' subsites, i.e., regions 
beyond which additional steric bulk will overlap with the atoms 
of the active site. 

ACTUAL (plC50) 

Figure 7. Fitted preditions vs actual pICso for the CoMFA analysis of 
61 thermolysin inhibitors incorporating only CoMFA parameters 
(QSAR9). The model was derived using 11 principal components having 
a cross-validated R2 = 0.70. 
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Figure 8. Predicted vs actual pICso for the test data set of 11 diverse 
thermolysin inhibitors incorporating only CoMFA parameters (QSAR9). 
The predictive model was derived using eight principal components having 
a cross-validated R2 = 0.70 and a conventional R2 = 0.98. 

zinc descriptors equal to 10 and 100 require only three components 
to explain the same amount of variance. 

C. CoMFA Fields. 1. ACE. The CoM FA coefficient contour 
maps for the steric and electrostatic potentials, which are 
calculated as the scalar product of the relevant QSAR coefficient 
and the standard deviation of all values in the corresponding 
columns of the data table, are depicted in Figure 9, parts a and 

(74) Stanton, J. L.; Watthey, J. W. H.; Desai, M. N.; Finn, B. M.; Babiarz, 
J. E.; Tomaselli, H. C. J. Med. Chem. 1985, 28, 1603-1606. 

(75) Stanton, J. L.; Gruenfeld, N.; Babiarz, J. E.; Ackerman, M. H.; 
Freidmann, R. C; Yuan, A. M.; Macchhia, W. J. Med. Chem. 1983, 26, 
1267-1277. 

(76) Oya, M.; Kato, E.; Iwao, J.; Yasuoka, N. Chem. Pharm. Bull. 1982, 
30, 484. 

(77) Burley, S. K. FEBS Lett. 1986, 203, 139-203. 
(78) Dougherty, D. A.; Stauffer, D. A. Science 1990, 250, 1558-1560. 
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Figure 9. Stereoviews of the contours of the CoMFA STDEVCOEFF for the ACE series surrounding the ACE inhibitors captopril (red) and enalapril 
(cyan), (a, top) Electrostatic contours at the ±0.02 kcal/mol level: the blue contours (STDEVCOEFF = -0.02) indicate regions where the addition 
of negative charge will increase activity and the yellow contours (STDEVCOEFF = +0.02) indicate regions where the addition of positive charge 
will increase activity, (b; bottom) Steric contours at the ±0.01 kcal/mol level: the blue contours (STDEVCOEFF = -0.01) indicate regions where 
the additon of steric bulk is associated with decreased activity. The yellow contours (STDEVCOEFF = +0.01) indicate regions where the addition 
of steric bulk is allowed and also define the steric boundary of the active site. 

2. Thermolysin. The principle electrostatic interactions 
between an inhibitor and the active site of thermolysin are well 
defined by the crystal structure of the phosphonamidate ZFP-
LA." These interactions are thought to closely represent the 
interactions of a peptide substrate in the transition state. Tyr-
157, His-231, and GIu-143 all serve as hydrogen bond donors to 
the phosphonamide oxygens. The amide oxygen of Ala-113 and 
oxygen ODl of Asn-112 serve as H-bond acceptors of the 
phosphonamide proton. The carbonyl oxygen of the inhibitor's 
carbobenzoxyl group forms a strong hydrogen bond with the amide 
nitrogen of Trp-115. The contours of the CoMFA electrostatic 
field correlate well with these interactions (Figure 10a). These 
contours show regions where an increase in negative charge (top 
figure) and high positive potential (bottom figure) will increase 
activity. These regions correspond to the inhibitor's hydrogen 
bond acceptor and hydrogen bond donor sites, respectively. 
Additionally, there are extended areas of electrostatic potential 
in the solvent exposed region of the active site. Although there 
is no correlation for these contours with the phosphonamide 
inhibitor shown, they most likely indicate solvent/inhibitor 
interactions with other inhibitors in the training set that are further 
extended at their C-terminus such as the hydroxamic acid 
inhibitors.71 

The binding sites (S2 , S i, S i', and S2') of thermolysin correspond 
to the P2 (carbobenzoxyl), P, (phenylalanyl), P | ' (leucyl), and 
P2 ' (alanyl) residues of ZFPLA. The bottom figure of Figure 
1 Ob indicates the region where the S T D E V C O E F F for the steric 
potential is positive. These are regions of allowed steric inter­
actions which coincide with the S,' and S2 ' binding sites around 
the Leu and Ala residues of the inhibitor. The Phe residue of the 

inhibitor is solvent exposed and does not interact with the enzyme, 
so that the contour around its phenyl ring may be representative 
of a favorable steric interaction with enzyme-bound water 
molecules. This is supported by the fact that the crystal structure 
of native thermolysin shows water molecules in the P | region that 
have been displaced in the inhibitor-bound crystal structure. This 
contour may also be a manifestation of the entropy gain in 
displacing solvent upon binding of the inhibitor, which would be 
expected to produce overpredicted binding affinities, such as those 
observed. The top figure of Figure 10b shows a contour region 
which fills the gap between the Pi residue and the active site 
indicating that there are some sterically unfavorable orientations 
of the P, and P2 residues with the training set. This is reflective 
of a number of inhibitors such as ZGPLL,57 which has no phenyl 
ring to occupy the S, site. In these inhibitors the carbobenzoxy 
carbonyl points away from the amide of Trp-115 so that the 
Z-group phenyl ring actually occupies a region between the Si 
and S2 binding sites. 

Discussion 

In determining the active site geometry of the ACE inhibitors, 
Mayer et al.21 assumed that all classes of ligands bind to the 
active-site zinc in the same mode. This assumption may be overly 
restrictive since most of the sulfhydryl inhibitors have at least 
one less rotatable bond between the zinc-ligand and the amide 
carbonyl than do the phosphorous- or carboxylate-based inhibitors, 
and may have a much different orientation at the zinc atom. 
Additionally, crystal structures of inhibitors of thermolysin 
indicate that some phosphorous-based inhibitors bind to the active 
site zinc in a bidentate manner. In the Mayer model, the 
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Figure 10. Stereoviews of the electrostatic contours at the ±0.04 kcal/ 
mol level of the CoMFA STDEV*COEFF for the thermolysin series 
shown surrounding the crystal structure of the potent inhibitor ZFPLA. 
The essential interactions of the inhibitor (solid lines) with the active site 
(dashed lines) are shown, (a) Regions where the STDEV*COEFF is 
negative show where the addition of negative charge will increase activity, 
(b) Regions where the STDEVCOEFF is positive show where the additon 
of positive charge will increase activity. These regions correlate well 
with the inhibitor's hydrogen bond acceptor and donor sites, respectively. 

phosphorous-based inhibitors were modeled as binding to the 
zinc in a monodentate manner which may explain the variance 
in the phosphorous predictions. Hausin and Codding79 have 
studied a number of crystal structures of zinc-bound ligands and 
have suggested that the zinc coordination geometry of Andrews22 

that was used by Mayer to define the zinc-sulfhydryl and the 
zinc-carboxyl geometry for the systematic search is incorrect 
and can lead to a variance in zinc position by as much as 1 A. 
An additional consideration, which we have not explicitly taken 
into account, is the strength of the zinc-ligand interaction. SAR 
data indicate a strong correlation of inhibitor activity to zinc-
ligand type, i.e., phosphate > carboxylate > thiol. Although the 
zinc descriptor is an approximation of these different interactions, 
it is an overly simplistic one and does not explicitly consider the 
energetics of the zinc-ligand bond. This may be an essential 
parameter for explaining the differences in activity. 

In the case of the thermolysin analysis, we have removed the 
variable of the active site geometry from the model, but we are 
presented with a new problem—optimization of the geometry 
about the zinc atom. As discussed previously, the TRIPOS force 
field is not parameterized for zinc. Optimized structures could 
only be obtained by ignoring the zinc atom and defining the zinc-
ligand bond(s) as an aggregate. The active site geometries about 
the zinc atom were based entirely on those of the crystal structures 
of similar inhibitors. An alternative solution is to optimize the 
structures using a force field that has zinc parameters. Such a 
force field is Vedani's YETI force field80 which is a modification 
of the Kollman force field81 incorporating a charge-transfer model 

(79) Hausin, R. J.; Codding, P. W. J. Med. Chem. 1990, 33, 1940-1947. 
(80) Vedani, A.; Huhta, D. W. / . Am. Chem. Soc. 1990,112,4759-1767. 
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Figure 11. Stereoviews of the steric contours at the ±0,08 kcal/mol level 
of the CoMFA STDEVCOEFF for the thermolysin series shown 
surrounding the crystal structure of the potent inhibitor ZFPLA. The 
essential interactions of the inhibitor (solid lines) with the active site 
(dashed lines) are shown, (a) Regions where STDEVCOEFF is negative 
show where additional steric bulk will decrease activity, (b) Regions 
where STEDEV*COEFF is positive show regions of allowed steric 
interactions and also define the boundaries of the active site. 

for metal-ligand interactions which yields atomic charges that 
are in agreement with the semiempirical calculations of Giessner-
Prettre and Jacob82 for Zn2+ in the thermolysin active site. We 
have optimized several thermolysin inhibitors using YETI v5.0 
on a VAXStation 3520 and have obtained structures consistent 
with X-ray data. YETI, however, requires some a priori 
knowledge, or assumptions, about the binding of the ligand to the 
active site zinc atom. Crystal data indicate that the zinc atom 
may be tetracoordinated with the ligand bound to the zinc in a 
monodentate arrangement, as is the case with inhibitors such as 
ZGPLL57 and phosphoramidon,83 or in a bidentate manner with 
the zinc in a pentacoordinated transition state as found with the 
inhibitor ZFPLA.57 YETI requires the user to define the 
coordination number of the metal center prior to optimization, 
and there are no rules consistent with all of the crystal data to 
guide such a prediction. The most effective use of YETI would 
be to optimize each structure in both coordination states and 
select the one with the lowest energy. Another question arises 
concerning the orientation of the ligand with respect to the Si, 
S2, Si', and S2 ' subsites. In most cases the orientation would 
seem to be straightforward, but how does one explain or predict 
the orientation seen with the inhibitor L-Leu-NHOH, which binds 
"backward" in the active site with respect to its N-terminal to 

(81) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C; Ghio, C; 
Alagona, G.; Profeta, S.; Weiner, P. J. J. Am. Chem. Soc. 1984, 106, 765-
784. 

(82) Giessner-Prettre, C; Jacob, O. J. / . Comput.-AidedMolec. Des. 1989, 
3, 23-37. 

(83) Weaver, L. H.; Kester, W. R.; Matthews, B. W. J. Mol. Biol. 1977, 
114, 119-132. 
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Table X. Summary of Results Incorporating Approximations of Thermodynamic Parameters 

QSAR 

13. CoMFA + DO?" 
(Zn =10X) 

14. CoMFA+ AH/ 
(Zn =10X) 

15. CoMFA+ DOF+AH 
(Zn =10X) 

16. CoMFA+ DOF 
(Zn =10X) 

obs 

68 

68 

68 

61 

SE0 

1.29 

1.31 

1.33 

1.32 

R2 cross* 

ACE 

0.68(6)' 

0.66(5) 

0.65(6) 

Thermoly 

0.67(11) 

F test 

43.07 

41.34 

34.86 

sin 

243.11 

p value 

0.00 

0.00 

0.00 

0.00 

Ri* 

0.81 

0.77 

0.77 

0.98 

SD 

0.99 

1.07 

1.07 

0.31 

predictive R2 

0.55* 

0.62* 

0.63* 

0.30* 

8 Cross-validated standard error of estimate. * Cross-validated R2; R2 value for analysis using designated number of cross-validation groups. 
c Conventional ^?2: Fitted R2 value for predictive model derived using no cross-validation and the optimum number of principal components. d DOF 
is defined as the number of torsional degrees of freedom in each inhibitor. • Numbers in parentheses are optimal numbers of components. / AH is the 
change in conformational enthalpy, AHconform = Haiigned - H1nJn, where H1U1Md is the energy of the molecule in its aligned conformation, and Hrnin is 
the energy of the conformation at the nearest local minima. * 20 inhibitors. * 11 inhibitors. 

C-terminal sense, having its leucyl side chain in the S / site rather 
than in the Sj site as the "normal mode" of binding for extended 
substrates would dictate?59 In aligning the structures for which 
there are no crystal data, we have had to make assumptions about 
both the zinc geometry and the orientation in the active site which 
may not be correct. 

An important question to ask at this point is what factors are 
sufficient to parameterize ligand-receptor binding, and does 
CoMFA adequately represent those parameters. Williams et 
al.84 have developed an expression for estimating the binding 
constants for bimolecular associations in solution in which they 
partition the free energy of binding into five terms: (i) AG^ns+rot). 
the change in translational and rotational free energy upon ligand-
receptor association, (ii) AG(rotor), the free energy change due to 
the freezing out of internal rotations upon association, (iii) EAG;, 
the free energies of interactions between polar functional groups, 
(iv) AGvdw. the free energy of hydrocarbon-to-hydrocarbon 
interactions (molecular packing of the complex relative to the 
dissociated form in the solvent), and (v) AGH, the transfer free 
energy for nonpolar groups from water to the active site as well 
as the associated release of ordered water (the hydrophobic effect). 
Thus, the free energy of binding is controlled by a balance between 
the unfavorable terms, (i) and (ii), and the favorable terms, (iii), 
(iv), and (v), such that the AGbinding < 0 for complex formation 
to occur. CoMFA electrostatic and steric potentials are shape-
dependent, molecular parameters which may approximate only 
terms (iii) and (iv), respectively. CoMFA alone only considers 
interactions at the active site of the enzyme with the implicit 
assumption that the entropic contributions do not differ signif­
icantly. There is no explicit information describing the entropy 
loss due to the decrease in internal rotational degrees of freedom 
upon complex formation or the entropy gain due to the hydro­
phobic effect. Thus, these thermodynamic considerations which 
can strongly influence AG^ding are ignored when using only the 
CoMFA steric and electrostatic interactions. A molecule, 
therefore, may be predicted to be a potent inhibitor based on its 
CoMFA fields, but its activity may be much different due to 
solvation and hydrophobic effects, which are not explicitly 
described by the normal CoMFA parameters. 

In an effort to address the hydrophobicity issue, some of our 
early analyses incorporated CLOGP85 and dipole moment values 
with the CoMFA data. The resulting correlations were no better 
than the models derived from CoMFA parameters alone (R2 = 
0.66). Analyses using only CLOGP and dipole moment produced 
an R2 — 0.50. Sharp et al.86 have suggested that solvent partition 

(84) Williams, D. H.; J. P. L., C; Doig, A. J.; Gardner, M.; Gerhard, U.; 
Kaye, P. T.; LaI, A. R.; Nicholls, I. A.; Salter, C. J.; Mitchell, R. C. J. Am. 
Chem. Soc. 1991, 113, 7020-7030. 

(85) Daylight Chemical Information Systems, Inc.: Irvine, CA, USA. 
(86) Sharp, K. A.; Nicholls, A.; Friedman, R.; Honig, B. Biochemistry 

1991, 30, 9686-9697. 

coefficients underestimate the strength of the hydrophobic effect 
and that a better estimation is derived from transfer free energies 
which have been corrected for differences in volume entropy 
between solvents. A better companion to CoMFA for considering 
hydrophobic effects may be Kellogg and Abraham's HINT 
(Hydrophobic INTeraction) program87 which provides an in­
terface to SYBYL's QSAR module. Studies which incorporate 
HINT parameters into our CoMFA analyses are forthcoming. 

Additionally, we attempted to approximate binding energies 
and entropy effects using the overly simplified parameters of the 
number of torsional degrees of freedom in the inhibitor (DOF) 
and the change in conformational enthalpy, AH00n(OTm = âligned 
- #min» where tfaiignsd is the energy of the molecule in its aligned 
conformation, and Hmn is the energy of the conformation at the 
nearest local minimum. These parameters were added in addition 
to the zinc indicator (Table X). For the ACE series, these 
additional parameters clearly influenced the model, since the 
number of principal components increased from 4 to either 5 or 
6. There was, however, no significant change in either the 
conventional or crossvalidated R2 values with the addition of 
these parameters. The predictive ability of these models was 
comparable to those derived from the CoMFA parameters and 
zinc indicators alone but were no better than the best model 
derived using a zinc indicator of 10. Only the DOF parameter 
was added to the thermolysin analysis, and it had no effect on 
the results. The number of principal components, conventional 
R1, crossvalidated R2, and predictive R1 were unchanged from 
the analysis using a zinc descriptor of 10. In both analyses, the 
first four principal components explain 84% of the variance in the 
biological data. Analysis of the X loadings indicates that the 
DOF parameter is influencing the model, as the second component 
is heavily loaded by the DOF variable. 

The utility of a QSAR method such as CoMFA is ultimately 
as a pharmacological prescreen for biological activity prior to 
undertaking a potentially costly and time consuming synthesis 
project. The medicinal chemist, in selecting a training set and 
test sets, would not employ methods of statistical design. Instead, 
the chemist would construct a training set composed of molecules 
with known activities from an in-house database. The test 
molecules would be hypothetical structures derived from the 
chemist's knowledge of the training set combined with his/her 
chemical intuition. This is the same strategy that we have 
employed in the random selection of our test sets from the 
literature. 

The composition of the training sets and test sets, however, can 
have a substantial effect on the resulting correlations.88 One 
would not expect a molecule that is significantly different from 
those represented in the training set to be well predicted. The 

(87) Kellogg, G. E.; Abraham, D. J. In Virginia Commonwealth Univer­
sity: Richmond, VA, USA, 1991. 
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Table XI. Mean Activities of the Data Sets Used in the ACE 
Analyses 

data set 

training set 
diverse inhibitors 
phosphates 
carboxylates 
thiols 

no. obs 

68 
20 
19 
10 
17 

mean p(IC50) (log M) 

5.91 
7.11 
7.88 
7.41 
4.63 

std dev 

2.15 
1.27 
0.63 
0.93 
1.57 

members of the test data sets reflect chronological appearance 
in the literature rather than rational design. This may explain, 
to some degree, the poor predictions obtained for the thiol-based 
inhibitors. Because of their generally marginal activities as well 
as their side effects, sulfhydryl-based ACE inhibitors have not 
received much attention in the recent literature. The set of thiols 
chosen as a test set was published in 1981" and includes molecules 
with marginal activities (pIC50 = 2.5-7.0) which are not well-
represented in the training set. This is supported by a comparison 
of the mean activities of each data set (Table XI), which shows 
that the mean activity of the thiol test set is at least one order 
of magnitude lower than that of the training set and 2-3 orders 
of magnitude lower than those of the other test data sets. The 
68-membered ACE training set, while being diverse in structure, 
does not necessarily reflect the diversity among all of the structures 
represented in the test data sets. Future approaches will include 
reselection of the training and test data sets from the entire set 
of 137 molecules using hierarchical cluster analysis89'90 which 
factors data sets into reasonably homogeneous subgroups with 
respect to their various physicochemical parameters. This will 
insure that the training set is representative of the entire range 
of structures currently in our database. 

An additional variable to consider it the method of charge 
calculation. For this study Gasteiger-Marsili charges were used 
for all molecules. There have been no systematic studies 
comparing the method of charge calculation and the quality of 
the correlations from CoMFA. Kim and Martin made a 
preliminary investigation in this area and concluded that AMI 
charges gave the best results for correlating the electronic effects 
of substituted benzoic acids.24 While they compared correlations 
using AMI and STO-3G charges, they did not derive models for 
charges calculated using the Gasteiger method. Recent publi­
cations have reported successful CoMFA analyses using both 
semiemperical and Gasteiger charges.91'92 Our choice of Gasteiger 
charges was based primarily on speed and convenience of 
calculation as well as an assumed independence of charge 
calculation method on CoMFA results. Since more recent data 
indicates that the preferred method of charge calculation may be 
dependent on the molecules being studied as well as the target 
property being correlated, further CoMFA studies using semiem-
perically derived charges will be performed for purposes of 
comparison. 

The results of our studies give strong support to both the active 
analog approach93 used to define the alignment rule for the ACE 
series and the CoMFA methodology itself. In the absence of an 
experimentally known active site geometry, we have derived 
correlations which explain as much as 84% of the variance in 
activities among a set of 68 diverse ACE inhibitors using CoMFA 
steric and electrostatic potentials plus a zinc indicator variable. 
If the set of 68 ACE inhibitors is divided into three classes and 

(88) Wold, S.; Sjostrom, M.; Carlson, R.; Ludstedt, T.; Hellberg, S.; 
Skagerberg, B.; Wikstrom, C; Ohman, J. Anal. Chim. Acta 1986,191, 17-
32. 

(89) Hansch, C; Unger, S. H.; Forsythe, A. B. J. Med. Chem. 1973, 16, 
1217-1222. 

(90) Bratchell, N. Chemometrics lntell. Lab. Systems 1989, 6, 105-125. 
(91) Diana, G. D.; Kowalcsyk, P.; Treasurywala, A. M.; Oglesby, R. C; 

Pevear, D. C; Dutko, F. J. J. Med. Chem. 1992, 35, 1002-1008. 
(92) McFarland, J. W. J. Med. Chem. 1993, 35, 2543-2550. 
(93) Marshall, G. R.; Barry, C. D.; Bosshard, H. E.; Dammkoehler, R. D.; 

Dunn, D. A. Olson, E. C, Christoffersen, R. E., Eds.; American Chemical 
Society: Washington, DC, 1979; Vol. 112, pp 205-226. 
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Figure 12. Predicted vs actual pICso for the collective ACE data set of 
test molecules having residuals <1.0, using CoMFA parameters plus a 
zinc indicator equal to 10 (QSAR2). The predictive model was derived 
using four principal components having a cross-validated R2 = 0.64 and 
a conventional R2 = 0.84. 

correlations are derived for each class, CoMFA parameters alone 
explain 79% to 99% of the variance in activities. It is notable that 
we can derive statistically significant correlations in spite of the 
fact that CoMFA does not consider hydrophobicity or solvation. 
This demonstrates the intrinsic power and utility of the method. 
In further support of the active analog approach, the crossvalidated 
results of the ACE series are equivalent to those of the thermolysin 
series (crossvalidated J?2 = 0.65-0.70), for which the alignment 
rule was defined by crystallographic data. 

Among the existing CoMFA analyses in the literature, only 
Greco et al.27 have analyzed a large data set of noncongeneric 
structures. Their analyses of 39 diverse muscarinic agonists 
produced correlations with conventional .R2 values in the range 
of 0.87-0.90, also using an alignment rule derived from the active 
analog approach. Their objective, however, was to determine 
the optimal conditions for a CoMFA run by systematically varying 
the method of charge calculation, lattice point spacing, and 
standard deviation cut-off. Their results indicated that corre­
lations were convergent to a narrow range of R2 values, 
independent of the conditions chosen. Their analyses, however, 
did not include any attempts to predict activities of molecules 
outside the training set, i.e., the use of a test set. The predictions 
for the molecules outside the training sets are a valid test of the 
predictive ability of the model, rather than just a confirmation 
of self-consistency of the derived model. The predictive corre­
lations presented represent a total of 66 diverse inhibitors that 
were not chosen as analogs of compounds present in the training 
set but by selecting recently published papers and testing all 
compounds in the paper. Using the ACE model with a zinc 
indicator of 10 as an example, 3 5 out of the 66 predicted molecules 
had residuals less than one log value. The predictive R2 values 
for these 35 molecules are 0.91, 0.93, 0.95, and 0.24 for the set 
of 20 diverse inhibitors, the carboxylates, the phosphates, and the 
thiolates, respectively. The predictive R2 for the collective set of 
these 35 test molecules is 0.90 (Figure 12). Of the 31 inhibitors 
with residuals greater than 1.0, 8 are carboxylates, 12 are 
phosphates, and 11 are thiols. Clearly, no single class of inhibitors 
dominates the distribution of residuals. Considering both the 
composition and the method of selection of the test data sets, the 
fact that more than 50% of the molecules are predicted with 
correlations greater than R2 = 0.90 lends strong support to the 
use of CoMFA as a tool for QSAR development. 

Conclusions 

CoMFA steric and electrostatic potentials are useful parameters 
for deriving 3-D QSAR models both in the presence and absence 
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of experimentally known active site geometries. Correlations 
derived using only CoMFA steric and electrostatic potentials are 
equivalent, if not superior, to those derived using the conventional 
QSAR parameters such as log P, Hammett's s, Taft's Es, and 
MR. The models derived from the thermolysin training set, for 
which the alignment rule was defined by crystal structures of 
enzyme-inhibitor complexes, were somewhat better, based on 
conventional R2S, than those for the ACE series with its 
computationally derived active site geometry. This indicates a 
clear dependence on the alignment rule for the development of 
robust QSARs. However, cross-validated R2 values for the two 
were comparable, which supports the use of the active analog 
approach as a reliable method for the derivation of active site 
geometries in the absence of experimentally derived structural 
data. Predictions for the ACE series were improved by the 
addition of a zinc-descriptor to explicitly define the type of zinc-
ligand interaction, although no single model could consistently 
predict the activities of all classes of ACE inhibitors. More 
parameters than just CoMFA parameters are apparently nec­
essary to describe the interactions which dictate ligand binding. 
Specifically, the CoMFA methodology ignores the thermody­
namics of binding, namely the entropy loss due to complex 

formation and the hydrophobic effect. While CoMFA's greatest 
utility lies in its ability to provide insight into the topographical 
properties necessary for binding, additional parameters which 
consider all the factors determining the free energy of binding 
will be necessary if one is to derive QSARs that not only explain 
the variance in the training set but also can predict activities of 
new structures as well. 
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